
Selecting Search Strategy in Constraint Solvers
using Bayesian Optimization
1st Hedieh Haddad1,2, 2nd Pierre Talbot2, 3rd Pascal Bouvry1,2

1Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg
2University of Luxembourg, Luxembourg

hedieh.haddad@uni.lu, pierre.talbot@uni.lu, pascal.bouvry@uni.lu

Abstract—In the field of constraint programming, selecting the
most effective search strategy for a new problem is a complex
task. Despite the existence of numerous autonomous search
strategies, the effectiveness of a strategy is highly problem-specific
and no single strategy can universally excel. Therefore, for the
solver’s developers, it is difficult to find a good default strategy
working across many problems. For the end-user, it is a daunting
task to select the best search strategy, and they will usually rely
on the solver’s default, missing out better strategies.

In this paper, we introduce the probe and solve algorithm which
explores different search strategies in a probing phase, using a
portion of the global timeout, and uses the best strategy found
to solve the problem. By viewing the search strategy as hyperpa-
rameters, we leverage Bayesian optimization, a hyperparameter
optimization technique well-known in machine learning but, to
the best of our knowledge, not used in constraint programming. A
key strength of our approach is to be generic and non-invasive: it
can be used on top of any MiniZinc or XCSP3-compatible solvers,
without modifying those. Further, probe and solve consistently
achieved better results in the XCSP3 and MiniZinc competitions
than the solver’s default search and modern dynamic search
strategies: DomWDeg/CACD, FrbaOnDom and PickOnDom,
with the ACE and Choco constraint solvers.

Index Terms—Constraint programming, search strategies,
Bayesian optimization, hyperparameter optimization.

I. INTRODUCTION

Constraint programming (CP) is a computational paradigm
that operates with mathematical relations, also known as
constraints. This method offers a declarative way to represent
a wide array of real-world problems, ranging from scheduling
and vehicle routing to biology and musical composition [1].

One of the key advantages of CP is its adaptability. It
supports a broad spectrum of constraints, including linear and
non-linear, and those over discrete or continuous domains.
This versatility sets it apart from other methods like SAT,
which focuses on Boolean formulas [2], and linear program-
ming [3], which is designed to solve linear constraints. CP
emphasizes defining the problem itself, focusing on the ‘what
to model’ rather than the ‘how to solve’. Once the constraint
model written, a general-purpose solver is responsible for the
actual problem-solving process.

In order to find a solution to a problem, CP solvers use a
search process to explore the space of possible solutions. The
search process is guided by the domains of the variables and

This work is partially funded by the joint research programme
UL/SnT–ILNAS on Technical Standardisation for Trustworthy ICT,
Aerospace, and Construction.

the constraints, and the goal is to find a solution that satisfies
all the constraints. To guide the search process, CP solvers use
a variety of search strategies to determine the order in which
the solver explores the space of possible solutions and can
have a significant impact on the performance of the solver.

However, as there is not a universally efficient algorithm for
all problems, CP experts often need to customize the solver
and devise specific search strategies for each problem to ensure
efficiency [4], [5]. In this light, they have implemented some
adaptive search strategies to autonomously and dynamically
gather valuable information, throughout the search process,
enabling more informed decision-making. Among these vari-
ous search strategies, PickOnDom [6], FrbaOnDom [7], and
DomWDeg/CACD [8], [9] stand out as three popular variable
selection strategies utilized in constraint programming. Simi-
larly to [6], we have compared these three strategies on the
XCSP3 competition of 2023 [10], and the results show that
none of these strategies can consistently outperform the others.

In this work, we introduce the probe and solve algorithm
(PSA) which first probes the problem with different search
strategies and then solve the problem with the best strategy
found (Section III). By trading solving time for configuration
time, we hope to find a better search strategy on average.
During the probing phase, we use Bayesian optimization [11]
to select the different search strategies to test. Although
Bayesian optimization is a standard and efficient hyperpa-
rameter optimization (HPO) technique in the field of machine
learning [12], [13], we are not aware of its usage in the realm
of CP.

A search strategy is usually a combination of a variable
and value selection strategies. We keep this simple view as
it makes it easy to encode the search strategy into a set of
hyperparameters to be optimized by an HPO method. From
our experiments, when we considered more parameters—
such as combination of strategies, or solver’s parameters—the
hyperparameters space became overly large and the efficiency
of the approach decreased. It is also due to the fact that
evaluating each configuration is a time-consuming process
as it involves running the solver for some time. Hence, we
have kept the hyperparameters space small, containing only
the most impactful parameter: the search strategy.

The goal of HPO algorithms is to automatically tune the
parameters of an underlying algorithm, but they also contain
parameters that can impact the efficiency. A contribution of



PSA is to be parameterless. Indeed, PSA automatically adjusts
the time used by each probe to gather valuable feedback and
guide the hyperparameter search effectively. Furthemore, by
an extensive experimental analysis, we found that probing for
20% of the global timeout is a robust default probing time.

Fig. 1: Comparison of objective values for three different search strategies.
Each circle in the diagram represents the instances solved by a specific
heuristic. The overlapping areas of the circles indicate instances where the
search strategies achieved identical objective values. For instance, CACD
outperformed FRBA and PICK3 in 50 instances, matched the result of PICK3
in 10 instances, and all three strategies yielded identical results in 87 instances.

We evaluate PSA on a standard set of benchmark problems
from the XCSP3 competition and the MiniZinc challenge [14].
The results are then compared with the default and most com-
monly used search strategies to fully leverage each solver’s
performance (Section V-E). The results demonstrate that the
algorithm performs effectively within the XCSP3 framework
and ACE solver [15], and MiniZinc with Choco solver [16],
as detailed in Section V.

The contributions of this work are as follows:
• Non-invasive. PSA is generic and non-invasive as it can

be used on top of any MiniZinc or XCSP3-compatible
solvers, without modifying those (Section III).

• Parameterless. PSA operates without the need for pa-
rameter setting or optimization, eliminating the necessity
for manual parameter setup.

• Robustness. The robust performance of PSA, even with
short probing timeouts, is validated through statistical
analysis as detailed in Section IV.

• Efficiency. PSA demonstrates superior results compared
to the default solver strategy or individual dynamic search
strategies, highlighting its efficiency (Section V).

II. BACKGROUND

A. Constraint Programming

A constraint satisfaction problem (CSP) is a tuple ⟨X,D,C⟩
where X is a set of variables, D are the domains, and C is the
set of constraints. By utilizing a constraint solver, the goal is to
find solutions that satisfy these given constraints. An extension

is the constraint optimization problem (COP) which is a tuple
⟨X,D,C, obj ⟩ with obj ∈ X where the goal is to find the
best objective possible (either by minimization or maximiza-
tion). Without loss of generalities, we suppose minimization
problems in our definitions and algorithms. The constraint
solver is essentially a backtracking procedure dividing the
domains of the variable following a certain search strategy
and pruning the domains using a form of logical inference
called propagation [17]. Commonly used search strategies in
constraint programming are a combination of variable and
value selection strategies.

Different problem domains and characteristics may require
different search strategies to achieve the best performance.
Therefore, the design and evaluation of search strategies are
ongoing research areas in CP, aiming to provide guidance and
tools for effectively solving complex problems [18], [19].

B. Search Strategies

Search strategies are methods to explore the space of
possible solutions for a constraint problem. A search strategy
consists of two components: a variable selection strategy and a
value selection strategy [20]. While it is possible for a search
strategy to encompass more than these two components, within
the context of this paper, we define a search strategy as the
combination of these two elements.

Variable selection strategies determine the order in which
variables are chosen for assignment during the search process,
such as input_order (variables are chosen for assignment
in the order they were input into the system) or first_fail
(the variable with the smallest domain i.e., the fewest possible
valid values, is chosen first) [21].

On the other hand, value selection strategies determine
the order in which values are considered for assignment to
variables, utilizing heuristics like selecting the minimum or
maximum value or choosing randomly from the remaining
values [22]. These strategies determine how the solver ex-
plores the domain of a selected variable. Examples of value
choice strategies include selecting the minimum or maximum
value, choosing randomly from the remaining values, or using
heuristics based on problem-specific knowledge [23].

The choice of heuristics can have a significant impact on the
efficiency and effectiveness of the search. Different heuristics
may be suitable for different types of problems, constraints,
and objective functions. Therefore, finding a good search
strategy for a given problem is a challenging task.

C. Hyperparameter Optimization

Hyperparameter optimization (HPO) is the process of find-
ing the optimal values for the hyperparameters of a machine
learning algorithm, such as learning rate, regularization, or
number of hidden units. Hyperparameters are the parameters
that are not learned by the algorithm but are set by the user
before training [24]. Choosing the right hyperparameters can
have a significant impact on the performance and efficiency of
the algorithm, but finding them can be challenging, especially
for complex models and problems.



One of the main challenges of HPO is the trade-off between
exploration and exploitation, that is, how to balance the search
between trying new and potentially better values for the
hyperparameters, and using the best values found so far [25].
Exploration can help to avoid getting stuck in local optima and
discover new regions of the search space, but it can also waste
time and resources on poor values. Exploitation can help to
improve the performance and efficiency of the algorithm, but
it can also miss out on better values that are not yet evaluated.

Several HPO methods have gained more popularity, includ-
ing: grid search, random search [26], hyper-band optimiza-
tion [27], multi-armed bandit [28], and bayesian optimization.
Different HPO methods have different ways of dealing with
this trade-off, and there is no one-size-fits-all solution that
works for every problem and algorithm [25].

III. PROBE AND SOLVE ALGORITHM

In this section, we introduce the probe and solve algorithm
(PSA), a universal method designed to pinpoint effective
search strategies for tackling constraint problems. The algo-
rithm operates in two phases: the probing phase and the solv-
ing phase. The probing phase navigates the landscape of search
strategies using an HPO method, while the solving phase
applies the most effective strategy to resolve the problem.

We denote Svar as the set of variable selection strategies’
names (as recognized by the solvers), and Sval as the set of
value selection strategies’ names. The HPO method is tasked
with optimizing two arrays of integers, representing Svar and
Sval respectively. We define HP := P(Svar ×Sval) as the set
of all possible combinations of hyperparameters.

A. Algorithm

Let GT be the global timeout allocated to solve a CSP.
A portion of this time denoted as PT (probing timeout), is
specifically reserved for the probing phase. The value of PT
is a crucial parameter in our algorithm, and we have conducted
extensive experiments to optimize it within the context of the
overall timeout GT (Section V).

The probing phase will run for a portion of GT , which we
call probing timeout PT , which is a critical parameter that
we experimented with to optimize our algorithm. A probing
ratio of 20% strikes the right balance between exploration and
exploitation, as shown in Section IV.

During the probing phase, PSA evaluates a variety of search
strategies from the set HP . Each strategy is assessed for
a limited duration, initially set to 5 seconds, denoted CT
(current timeout). This timeframe not only accommodates
the computational requirements of simpler problems but also
factors in the necessary overhead for transmitting information
to the solver and retrieving the solutions.

The algorithm attempts to solve the problem within this
timeout. If the solver successfully finds the objective within
this timeframe, it continues to run the next experiment in the
probing phase using this timeout. However, if the solver fails
to find any objective result within the timeout, the approach
adapts by extending the defined timeout. This increment is

determined by a geometric coefficient, set to 1.2, which
multiplies the current timeout CT , thereby increasing it.

The timeout continues increasing until an objective is found
or PT is reached, using the calculation of elapsed time,
denoted by ET . This adaptive approach ensures that the algo-
rithm can effectively handle problems of various complexities
while maintaining efficiency. Specifically, in scenarios where
a solution cannot be found within 5 seconds.

Choosing the probing timeout too large will reduce the
number of combinations we can test and the effectiveness of
the HPO method. But choosing it too small will prevent us
from getting any solution and the comparison between two
runs will be harder. In our experiments, we compare two runs
using the objective value found and in the case of ties, the
time it took to reach that objective value. At the end of the
probing phase, we obtain a rank of the search strategies tested,
and we select the best one for the solving phase.

We now define more explicitly our approach in Algorithm 1.

Algorithm 1 Probe and Solve Algorithm (PSA)

function PSA(⟨X,D,C, obj ⟩, hpo,HP ,GT ,PT )
Initialize ET to 0 seconds
Initialize best obj to ∞
while ET < PT do

psolve ← λs.solve(⟨X,D,C, obj ⟩, s,CT )
ranking , obj ← hpo(HP , psolve)
ET ← ET + CT
if obj ̸=∞ then

min(obj , best obj )
else

CT ← CT ×Geometric Coefficient
end if

end while
if best obj =∞ then

return solve(⟨X,D,C, obj ⟩, ranking [0],GT−PT )
else

return min(best obj , solve(⟨X,D,C ∧ obj <
best obj , obj ⟩, ranking [0],GT − PT ))

end if
end function

The algorithm accepts a COP ⟨X,D,C, obj ⟩, a hyperparam-
eter function hpo, the set of available search strategies HP ,
and two timeouts: GT and PT .

The HPO method, denoted as hpo(HP , psolve), takes the
set of search strategies and an evaluation function. It returns
the ranking of the best search strategies and the best objective
found so far.

We assume a function solve(⟨X,D,C, obj ⟩, s, T ) that opti-
mizes a given COP using the search strategy s ∈ HP under the
timeout T . The solving phase operates for the remainder of the
global timeout and employs the best search strategy identified
in the probing phase to solve the constraint problem.



IV. VALIDATING THE ROBUSTNESS IN SHORTER
TIMEOUTS

In our study, we employed two statistical methods, Spear-
man’s rank correlation [29] and Kendall’s tau [30], to analyze
the results of the probing phase. The aim was to determine
whether the algorithm could identify effective search strategies
based on the rankings observed at both short and global
timeouts, and to understand how these rankings at shorter
timeouts correlate with those obtained at the global timeout.

We randomly selected three instances and ran them 10
times, each time recording the intermediary results and ranking
the search strategies. For each run, we separated the ranking of
the results after different timeouts: 5%, 10%, 20%, 50%, and
100% of the global timeout. We then examined whether the
rankings of the results, evaluated based on the objective func-
tion were correlated. This allowed us to investigate whether
the behavior of the search strategies remained consistent across
different runs and for the specific problem.

The correlation coefficient ranges from -1 to 1, where 1
indicates a perfect positive correlation, -1 indicates a perfect
negative correlation, and 0 indicates no correlation. In our
context, a high positive correlation suggests that the rankings
obtained from a specific run with a specific timeout are similar
to those obtained from another run with the same timeout.

This implies that if we run the approach with a fraction of
the global timeout and it yields a ranking of the search strate-
gies, the behavior of the search strategies tends to mirror the
behavior observed with the same instance and with the same
fraction of the global timeout but in a different run. This holds
true even though the seed for the Bayesian optimization varies
and PSA provides a different set and combination of search
strategies each time. Therefore, if a superior search strategy is
identified during a specific run, we can be reasonably confident
that the same strategy would also be deemed superior when
evaluated over another run.

For instance, in KidneyExchange-4-081, the table shows an
average correlation of 0.83 for all runs at first 5% of the global
timeout to each other. This suggests that in all 10 runs of this
specific instance, the behavior of search strategies in the first
5% of the global timeout were mostly the same as each other
and they were correlated in 83% of the time.

The result of ranking correlations can be seen in Table I.

V. EXPERIMENTS

In this section, we evaluate the performance of the PSA on
a set of benchmark problems from different domains.

A. Experimental Setup

The experiments presented, were carried out using a high-
performance computing facility. The computing time equates
to approximately 2500 node-hours. The technical specifica-
tions of a cluster compute node are: 2xAMD Epyc ROME
7H12 @ 2.6 GHz [64c/280W] processor with 256 GB RAM.

Our research relies on the data from the fifth interna-
tional XCSP3 constraint solver competition held in 2023 [15].
Specifically, we focus on all the COP problems derived from

this competition, amounting to a total of 250 instances, cov-
ering various types of constraints and objective functions. We
use ACE [15] as our main solver and Bayesian optimization
as the main HPO method to generate and evaluate different
combinations of search strategies as hyperparameters. For each
problem, we align our global timeout setting of 1200 seconds
with the one used by the XCSP3 Challenge.

Our aim is to demonstrate that PSA yields promising results.
Therefore, we have chosen to set the probing phase timeout to
different percentages of the global timeout, namely: 5%, 10%,
20%, 50%, and 100%. This allows to compare the efficiency
and applicability of this timeout and to determine whether a
shorter or longer probing phase yields better results.

B. Implementation

Our approach is implemented in Python, leveraging several
libraries for optimization and CP. The key libraries used
include Skopt [31] for HPO, Minizinc and PyCSP3 library
for CP.

The search strategies of the solvers are described declar-
atively in a JSON file. This allows us to easily modify and
experiment with different set of available strategies without
changing the core code.

For instance, a simplified example of the ACE solver within
the XCSP3 looks like this:

"XCSP3": {
"Search-Strategy": {
"varh_values":
["PickOnDom", "FrbaOnDom", "WdegOnDom"],
"valh_values":
["First", "Median"]}}

In this example, PickOnDom, FrbaOnDom and
WdegOnDom are the variable selection strategies, while
First and Median are the value selection strategy.

C. XCSP3 Benchmark with ACE Solver

In this subsection, we evaluate the performance of PSA
on the XCSP3 problems. XCSP3 is an XML-based format
designed to represent instances of combinatorial constrained
problems from the perspective of CP. It is an intermediate
integrated format that can represent each instance separately
while preserving its structure [10].

We compare the outcomes of PSA with four baselines.
These baselines include three popular variable selection strate-
gies: PICK3 (PickOnDom which is set with a pick degree of
three and linked with variables when constraint propagation
concludes with a conflict, as it was identified as the most
effective degree [6]), DomWDeg/CACD, FrbaOnDom and the
solver’s default strategy. Performance is evaluated based on
the objective value and the solving time. For the three popular
variable selection strategies, the value selection strategy was
left to the default of the solver as done in [6]. For the default
search strategy of solvers, we do not specify any variable or
value selection strategy, leaving this decision to the solver.



Instance 5% 10% 20% 50%
Spearman Kendall Tau Spearman Kendall Tau Spearman Kendall Tau Spearman Kendall Tau

CarpetCutting-test05 0.94 0.83 0.96 0.92 0.91 0.84 0.89 0.81
GeneralizedMKP-OR05x100-75-1 0.99 0.99 0.99 0.99 0.92 0.84 0.91 0.80

RIP-25-0-j120-01-01 -0.33 -0.33 0.88 0.79 0.92 0.82 0.97 0.89
KidneyExchange-4-081 0.83 0.83 0.87 0.84 0.90 0.82 0.93 0.82

TABLE I: Average percentage of ranking correlation for the same percentage of the global timeout in 10 different runs - (5,
10, 20, 50)% of global timeout

First, we aimed to observe the impact of these different
combinations of search strategies on the solver’s performance.
We strive to identify the best search strategy using PSA. This
is done by exploring all the variable selection strategies and
value selection strategies offered by the ACE solver itself.

The solver provides an array of strategies for both variable
selection and value selection, as shown below:

• Variable selection strategies:

{RunRobin, Wdeg, Memory, PickOnDom, FrOnDom,
WdegOnDom, ProcOnDom, Regret, FrbaOnDom, Ddeg}

• Value selection strategies:

{Dist, OccsR, Median, AsgsFp, Bivs2, First, AsgsFm,
Last, Robin, RunRobin, Bivs, InternDist, Occs, FlrsE}

This allows to thoroughly evaluate the effectiveness of dif-
ferent search strategies in improving the solver’s performance.

Fig. 2 illustrates the performance comparison between PSA,
with a probing timeout ratio of 0.2, and the four baseline
strategies. Each bar in the figure represents a specific baseline.
The height of the bars indicates the percentage of instances
where the performance of PSA either surpassed, matched, or
was surpassed by the baseline. This figure also provides insight
into the distribution of percentages across different models
where PSA outperformed the baselines at this specific ratio.

In Fig. 2a, PSA performs better in 29.49% of the models
than the default solver, and both yield equal results in 44.87%
of the models, indicating that neither strategy consistently
outperforms the other across all scenarios.

In the second step, we aim to evaluate the effectiveness
of dynamic search strategies in comparison to static ones.
Consequently, we select search strategies that are simpler to
implement and do not require collecting statistics of propa-
gators. The results obtained using a simple subset of variable
and value selection strategies with a probing timeout ratio of
0.2, can be seen in Fig. 2b.

Variable and value selection strategies are shown below:
Variable selection strategies:

{Deg, Rand, Lexico, Srand}

Value selection strategies:

{Vals, First, Last, RunRobin, Robin, Srand, Rand}

The results indicate that PSA method surpasses the baseline
methods in approximately 12% to 20% of the instances.

However, the baseline methods demonstrate superior perfor-
mance, outperforming PSA in around 50% of the instances,
considering the fact that the baselines utilize dynamic methods
to calculate and update weights. This could be interpreted
as an indication that dynamic approaches surpass static ap-
proaches in this context. This superior performance of dynamic
approaches could be attributed to their ability to adapt to
changing conditions during the search process. Unlike static
strategies, which use a fixed method throughout, dynamic
strategies can adjust their methods based on the current state of
the search. This adaptability allows them to navigate the search
space more effectively, potentially avoiding local optima and
finding better solutions.

Given that static search strategies appear to be less effective
than dynamic ones, we employed our algorithm on a subset of
three dynamic variable selection strategies. This was done to
identify which subset of search strategies could yield enhanced
performance. Consequently, we selected the three baselines,
namely: PICK3, CACD, and FRBA as a subset of our variable
selection strategies. The results of this approach with a probing
timeout ratio of 0.2, can be observed in Fig. 2c.

In Fig. 2c, at a ratio of 0.2, PSA performed better in 23.98%
of the models than FRBA, while this baseline performed better
in 18.70% of the models. The results were equal in 57.32%
of the models. This pattern is observed across different ratios
and heuristics, with some variations, and PSA demonstrated a
competitive performance against the baselines although PSA
takes some time to probe.

D. Minizinc Benchmark with Choco Solver

In this subsection, we concentrate on the efficacy of PSA
when applied to the MiniZinc benchmark. MiniZinc is an
open-source constraint modeling language. The MiniZinc
models are subsequently compiled into FlatZinc, a solver input
language comprehensible by a broad spectrum of solvers [14].
For this study, the utilized solver is Choco.

We compare the outcomes of our algorithm with the default
search strategy, which is the combination of (DomWDeg,
Indomain_Min) [32]. This combination is the preferred
choice for the solver’s default in the Choco solver.

The results of PSA on the MiniZinc benchmark problems,
shown in Fig. 3, demonstrate its performance across a variety
of problems. The results are more competitive than the solver’s
default strategy. When the ratio is set at 0.5, PSA outperforms
the default search strategy, achieving better results in 28.42%
of the instances. This is the highest percentage of instances
where PSA performs better among all the ratios tested. Gen-



(a) All available Svar and Sval in comparison with the baselines. (b) Simple set of Svar and Sval in comparison with the baselines.

(c) Svar={PICK3 ,CACD ,FRBA} and all available Sval in
comparison with the baselines.

Fig. 2: Comparative performance of PSA and baselines: an examination of variable and value selection strategies with probing timeout ratio 0.2. The
comparison is conducted across different baselines and is categorized into three sections: (a) comprehensive analysis using the set of all variable/value
selection strategies (b) analysis using the set of simple variable/value selection strategies (c) analysis using the set of three popular frameworks as variable
selection strategies with the set of all value selection strategies.

erally, PSA has demonstrated its potential by outperforming
the default search strategy and baselines in certain scenarios.

The process of using MiniZinc involves compiling the
models into FlatZinc [33] and then sending them to the solver.
This process is inherently time-consuming as it involves both
compilation and communication overheads. To address this,
we have decided to compile the model to FlatZinc once and
use it for the entire process of the experiment rather than in
each run, significantly reducing the time and computational re-
sources required. This change has contributed to the improved
performance of PSA in the MiniZinc framework.

E. Detailed Analysis and PSA Performance

The comprehensive results derive from the various bar
charts and tables and are shown in Table II. This includes a
subset of variable and value selection strategies, both static and

dynamic search strategies. These reveal that dynamic strategies
tend to yield superior results. This can be attributed to several
factors such as their ability to adapt to changing conditions,
their capacity to learn from past decisions, and their potential
to explore the search space more effectively.

We conduct an array of tests using different probing ratios,
specifically 5%, 10%, 20%, 50%, and 100% of the global
timeout. The results indicate that a probing ratio of 20% gen-
erally outperforms the others for our specific set of problems.
Additionally, we introduce two new columns in our results
table: Fallback to Default and Same Search Strategy. The
Fallback to Default column quantifies the instances where
PSA is unable to determine a search strategy within the given
timeframe, leading to the application of the default search
strategy during the solving phase. The Same Search Strategy



Fig. 3: Performance comparison of PSA and solver’s default across different
ratios in Minizinc framework with Choco solver.

column denotes the instances where PSA identifies a search
strategy identical to the solver’s default search strategy after
the probing phase.

VI. RELATED WORK

The application of artificial intelligence techniques to con-
straint solving has not been well explored in research. Some
studies overview the potential of machine learning in optimiz-
ing constraint solving processes [34].

Recently, a new constraint programming solver, SeaPearl,
was introduced [35] which supports machine learning routines
to learn branching decisions using reinforcement learning.
This represents a significant step forward in the integration
of machine learning and constraint programming.

In another study [36], a novel algorithmic framework is
introduced, combining multi-armed bandits and restarts to
optimize variable selection strategies in constraint-based appli-
cations. This approach is designed to be autonomous, adjusting
solver parameters to efficiently handle instances without man-
ual tuning, also an adaptive variant of Successive Halving that
exploits Luby’s universal restart sequence is presented [37].

In another study [38] they introduce the concept of deep
heuristics, a data-driven approach to learn extended versions
of a given variable selection strategy. It demonstrates that
deep heuristics, which can look ahead arbitrarily-many levels
in the search tree, solve 20% more problem instances while
improving on overall runtime for certain benchmark problems.

Despite the growing interest in using machine learning
for optimizing constraint solvers and search strategies, there
is much to explore, especially in applying hyperparameter
optimization techniques to constraint programming. Our work
focuses on this area, offering a black-box method that requires
no modifications to the solver, enhancing its flexibility and ap-
plicability across different constraint programming scenarios.

VII. CONCLUSION

In this research, we explored the use of hyperparameter
optimization in determining effective search strategies for
constraint programming solvers. Our aim was to develop a
simple, universal method that enables users, particularly those
new to constraint problem modeling, to swiftly distinguish
between efficient and inefficient search strategies. This is
especially beneficial when there is a lack of initial insight into
the potential effectiveness of different search strategies.

Our results indicate that PSA can surpass ACE and Choco’s
default strategies and recent dynamic strategies. It is note-
worthy that PSA produced performance metrics that were
comparable to those of the solver’s default search strategy
and the baselines. This is encouraging as it suggests potential
for further improvement and better results in future studies.
Furthermore, when using the Choco solver in Minizinc, it
consistently produced results that were predominantly superior
to the solver’s default search strategy.

The result also showed that there is a strong correlation
between results obtained within shorter timeouts and those
achieved in full timeouts. This implies that the same ranking
of results can likely be obtained during the probing phase,
thereby validating our approach.

There were instances where no combination of variable and
value strategies could surpass the solver’s default. However,
our approach still managed to produce promising results.

This research contributes to the ongoing development of
more effective tools and techniques for solving complex
constraint problems across various domains. It serves as a
foundation for the development of more advanced and efficient
constraint problem-solving methodologies. We are eager to
continue refining our approach and anticipate achieving even
better results in future studies.



TABLE II: Comprehensive results for all the possible ratios in comparison with the baselines.

Method Baselines Results (%) Additional Results (%)
PSA Better Baselines Better Equal Results Fallback to default Same search strategy

XCSP3 with ACE solver
All available Svar and Sval

0.05

CACD 23.11 24.37 52.52

25.60 0.81FRBA 20.73 25.20 54.07
PICK3 21.95 26.02 52.03
Default 19.23 30.77 50.00

0.1

CACD 23.85 25.94 50.21

16.19 0.80FRBA 25.10 21.86 53.04
PICK3 25.91 24.29 49.80
Default 27.85 24.05 48.10

0.2

CACD 26.89 21.85 51.26

13.0 1.21FRBA 25.20 19.92 54.88
PICK3 26.83 24.39 48.78
Default 29.49 25.64 44.87

0.5

CACD 25.63 23.95 50.42

8.82 1.56FRBA 23.98 21.14 54.88
PICK3 26.02 24.39 49.59
Default 28.21 24.36 47.44

1.0

CACD 2.94 26.47 70.59

8.53 2.40FRBA 3.25 25.20 71.54
PICK3 2.85 26.42 70.73
Default 2.56 25.64 71.79

XCSP3 with ACE solver
Simple set of Svar and Sval

0.05

CACD 13.08 47.26 39.66

28.16 0.00FRBA 11.02 42.04 46.94
PICK3 15.51 47.35 37.14
Default 14.29 51.95 33.77

0.1

CACD 15.90 43.51 40.59

23.88 0.00FRBA 11.34 40.49 48.18
PICK3 15.79 44.53 39.68
Default 16.46 49.37 34.18

0.2

CACD 13.39 46.03 40.59

18.62 0.00FRBA 8.91 42.11 48.99
PICK3 12.55 48.18 39.27
Default 16.46 54.43 29.11

0.5

CACD 12.61 50.42 36.97

16.26 0.00FRBA 9.35 44.31 46.34
PICK3 10.57 53.25 36.18
Default 17.95 56.41 25.64

1.0

CACD 0.00 9.62 90.38

15.38 0.00FRBA 0.00 9.72 90.28
PICK3 0.00 9.72 90.28
Default 0.00 13.92 86.08

XCSP3 with ACE solver
Svar={PICK3, CACD, FRBA}
All available Sval

0.05

CACD 25.52 19.67 54.81

22.26 0.40FRBA 23.89 18.22 57.89
PICK3 26.32 23.08 50.61
Default 20.25 27.85 51.90

0.1

CACD 27.31 20.59 52.10

18.29 0.81FRBA 27.24 16.67 56.10
PICK3 28.86 22.76 48.37
Default 19.23 30.77 50.00

0.2

CACD 28.15 21.85 50.00

15.04 8.13FRBA 23.98 18.70 57.32
PICK3 29.67 21.14 49.19
Default 23.08 25.64 51.28

0.5

CACD 25.52 24.69 49.79

8.90 2.42FRBA 23.89 22.27 53.85
PICK3 26.32 25.10 48.58
Default 26.58 27.85 45.57

1.0

CACD 3.77 28.03 68.20

8.50 2.83FRBA 2.83 26.72 70.45
PICK3 2.83 27.94 69.23
Default 1.27 30.38 68.35

Minizinc with Choco solver

0.05 Default 26.32 14.74 58.95 36.84 0.00
0.1 Default 26.32 10.53 63.16 31.58 1.05
0.2 Default 25.26 12.63 62.11 22.11 0.00
0.5 Default 28.42 11.58 60.00 23.68 1.05
1.0 Default 18.09 26.60 55.32 18.30 1.06



REFERENCES

[1] F. Rossi, P. v. Beek, and T. Walsh, “Handbook of Constraint
Programming [Book],” Aug. 2006, iSBN: 9780080463803. [Online].
Available: https://www.oreilly.com/library/view/handbook-of-constraint/
9780444527264/

[2] A. Biere, M. Heule, H. Van Maaren, and T. Walsh, “Handbook of
Satisfiability: Second Edition,” ser. Frontiers in Artificial Intelligence
and Applications, vol. 336. IOS Press, Feb. 2021. [Online]. Available:
http://ebooks.iospress.nl/doi/10.3233/FAIA336

[3] J. M. Bernd Gärtner, Understanding and Using Linear Programming,
ser. Universitext. Berlin, Heidelberg: Springer, 2007. [Online].
Available: http://doi.org/10.1007/978-3-540-30717-4

[4] H. Simonis and B. O’Sullivan, “Search Strategies for Rectangle
Packing,” in Principles and Practice of Constraint Programming, P. J.
Stuckey, Ed. Berlin, Heidelberg: Springer, 2008, pp. 52–66. [Online].
Available: https://doi.org/10.1007/978-3-540-85958-1 4

[5] E. Teppan, G. Friedrich, and A. Falkner, “QuickPup: A Heuristic
Backtracking Algorithm for the Partner Units Configuration Problem,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 26, no. 2, pp. 2329–2334, Jul. 2012. [Online]. Available:
https://doi.org/10.1609/aaai.v26i2.18979

[6] G. Audemard, C. Lecoutre, and C. Prud’homme, “Guiding Backtrack
Search by Tracking Variables During Constraint Propagation.” Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. [Online]. Available:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.9

[7] H. Li, M. Yin, and Z. Li, “Failure Based Variable Ordering Heuristics for
Solving CSPs (Short Paper),” in LIPIcs, Volume 210, CP 2021, vol. 210,
2021. [Online]. Available: https://doi.org/10.4230/LIPICS.CP.2021.9

[8] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting
systematic search by weighting constraints,” Jan. 2004. [Online].
Available: https://api.semanticscholar.org/CorpusID:17864847

[9] W. Hugues, C. Lecoutre, A. Paparrizou, and S. Tabary, “Refining
Constraint Weighting,” Nov. 2019, pp. 71–77. [Online]. Available:
https://doi.org/10.1109/ICTAI.2019.00019

[10] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette, “XCSP3:
An Integrated Format for Benchmarking Combinatorial Constrained
Problems,” Nov. 2022, arXiv:1611.03398 [cs]. [Online]. Available:
http://arxiv.org/abs/1611.03398

[11] J. Ungredda and J. Branke, “Bayesian Optimisation for Constrained
Problems,” May 2021, arXiv:2105.13245 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/2105.13245

[12] T. Agrawal, “Bayesian Optimization,” in Hyperparameter Optimization
in Machine Learning: Make Your Machine Learning and Deep
Learning Models More Efficient, T. Agrawal, Ed. Berkeley, CA:
Apress, 2021, pp. 81–108. [Online]. Available: https://doi.org/10.1007/
978-1-4842-6579-6 4

[13] A. Tanay, Hyperparameter Optimization in Machine Learning:
Make Your Machine Learning and Deep Learning Models More
Efficient. Berkeley, CA: Apress, 2021. [Online]. Available: https:
//doi.org/10.1007/978-1-4842-6579-6

[14] P. J. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer,
“The MiniZinc Challenge 2008–2013,” AI Magazine, vol. 35,
no. 2, pp. 55–60, Jun. 2014, number: 2. [Online]. Available:
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2539

[15] C. Lecoutre, “ACE, a generic constraint solver,” Jan. 2023,
arXiv:2302.05405 [cs]. [Online]. Available: http://arxiv.org/abs/2302.
05405

[16] C. Prud’homme and J.-G. Fages, “Choco-solver: A Java library for
constraint programming,” 2022, issue: 78 Pages: 4708 Publication
Title: Journal of Open Source Software Volume: 7 original-date: 2011-
11-04T09:09:18Z. [Online]. Available: https://github.com/chocoteam/
choco-solver

[17] K. Apt, “Constraint propagation algorithms,” in Principles of Constraint
Programming. Cambridge: Cambridge University Press, 2003, pp. 254–
298. [Online]. Available: https://doi.org/10.1017/CBO9780511615320.
007

[18] P. Talbot, “Spacetime Programming: A Synchronous Language
for Composable Search Strategies,” in Proceedings of the 21st
International Symposium on Principles and Practice of Declarative
Programming, ser. PPDP ’19. New York, NY, USA: Association
for Computing Machinery, Oct. 2019, pp. 1–16. [Online]. Available:
https://doi.org/10.1145/3354166.3354183

[19] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and P. J. Stuckey,
“Search combinators,” Springer, Berlin, Heidelberg, vol. 18, no. 2, pp.
269–305, 2013. [Online]. Available: http://link.springer.com/article/10.
1007/s10601-012-9137-8

[20] A. Palmieri and G. Perez, “Objective as a Feature for
Robust Search Strategies,” in Principles and Practice of
Constraint Programming, J. Hooker, Ed. Cham: Springer
International Publishing, 2018, pp. 328–344. [Online]. Available:
https://www.doi.org/10.1007/978-3-319-98334-9 22

[21] D. Grimes and R. J. Wallace, “Sampling Strategies and
Variable Selection in Weighted Degree Heuristics,” Lecture
Notes in Computer Science, pp. 831–838, Jan. 2007. [Online].
Available: https://www.academia.edu/55629464/Sampling strategies
and variable selection in constraint satisfac tion search

[22] R. M. Haralick and G. L. Elliott, “Increasing tree search efficiency for
constraint satisfaction problems,” Artificial Intelligence, vol. 14, no. 3,
pp. 263–313, Oct. 1980. [Online]. Available: https://doi.org/10.1016/
0004-3702(80)90051-X

[23] P. Refalo, “Impact-Based Search Strategies for Constraint
Programming,” in Principles and Practice of Constraint Programming
– CP 2004, D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, and M. Wallace, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, vol. 3258, pp. 557–571, series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-30201-8 41

[24] M. Wistuba, N. Schilling, and L. Schmidt-Thieme, “Hyperparameter
Search Space Pruning – A New Component for Sequential Model-Based
Hyperparameter Optimization,” in Machine Learning and Knowledge
Discovery in Databases, ser. Lecture Notes in Computer Science,
A. Appice, P. P. Rodrigues, V. Santos Costa, J. Gama, A. Jorge,
and C. Soares, Eds. Cham: Springer International Publishing,
2015, pp. 104–119. [Online]. Available: https://www.doi.org/10.1007/
978-3-319-23525-7 7

[25] M. Feurer and F. Hutter, “Hyperparameter Optimization,” in Automated
Machine Learning: Methods, Systems, Challenges, ser. The Springer
Series on Challenges in Machine Learning, F. Hutter, L. Kotthoff, and
J. Vanschoren, Eds. Cham: Springer International Publishing, 2019, pp.
3–33. [Online]. Available: https://doi.org/10.1007/978-3-030-05318-5 1

[26] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random
Search, Genetic Algorithm: A Big Comparison for NAS,” Dec. 2019,
arXiv:1912.06059 [cs, stat]. [Online]. Available: http://arxiv.org/abs/
1912.06059

[27] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization,” Jun. 2018, arXiv:1603.06560 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1603.06560

[28] A. Slivkins, “Introduction to Multi-Armed Bandits,” Apr. 2024,
arXiv:1904.07272 [cs, stat]. [Online]. Available: http://arxiv.org/abs/
1904.07272

[29] Y. Dodge, “Spearman Rank Correlation Coefficient,” in The Concise
Encyclopedia of Statistics. New York, NY: Springer, 2008, pp. 502–505.
[Online]. Available: https://doi.org/10.1007/978-0-387-32833-1 379

[30] L. Puka, “Kendall’s Tau,” in International Encyclopedia of Statistical
Science, M. Lovric, Ed. Berlin, Heidelberg: Springer, 2011, pp. 713–
715. [Online]. Available: https://doi.org/10.1007/978-3-642-04898-2
324

[31] “scikit-optimize: sequential model-based optimization in Python
— scikit-optimize 0.9.0 documentation.” [Online]. Available: https:
//scikit-optimize.github.io/dev/

[32] “The MiniZinc Handbook — The MiniZinc Handbook 2.3.0.” [Online].
Available: https://docs.minizinc.dev/en/2.3.0/index.html

[33] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “MiniZinc: Towards a Standard CP Modelling Language,”
in Principles and Practice of Constraint Programming – CP 2007,
C. Bessière, Ed. Berlin, Heidelberg: Springer, 2007, pp. 529–543.
[Online]. Available: https://www.doi.org/10.1007/978-3-540-74970-7
38

[34] A. Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, M. Atas, V.-M.
Le, K. Pilsl, M. Enzelsberger, and T. N. T. Tran, “An overview
of machine learning techniques in constraint solving,” Journal of
Intelligent Information Systems, vol. 58, no. 1, pp. 91–118, Feb. 2022.
[Online]. Available: https://doi.org/10.1007/s10844-021-00666-5

https://www.oreilly.com/library/view/handbook-of-constraint/9780444527264/
https://www.oreilly.com/library/view/handbook-of-constraint/9780444527264/
http://ebooks.iospress.nl/doi/10.3233/FAIA336
http://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1007/978-3-540-85958-1_4
https://doi.org/10.1609/aaai.v26i2.18979
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.9
https://doi.org/10.4230/LIPICS.CP.2021.9
https://api.semanticscholar.org/CorpusID:17864847
https://doi.org/10.1109/ICTAI.2019.00019
http://arxiv.org/abs/1611.03398
http://arxiv.org/abs/2105.13245
https://doi.org/10.1007/978-1-4842-6579-6_4
https://doi.org/10.1007/978-1-4842-6579-6_4
https://doi.org/10.1007/978-1-4842-6579-6
https://doi.org/10.1007/978-1-4842-6579-6
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2539
http://arxiv.org/abs/2302.05405
http://arxiv.org/abs/2302.05405
https://github.com/chocoteam/choco-solver
https://github.com/chocoteam/choco-solver
https://doi.org/10.1017/CBO9780511615320.007
https://doi.org/10.1017/CBO9780511615320.007
https://doi.org/10.1145/3354166.3354183
http://link.springer.com/article/10.1007/s10601-012-9137-8
http://link.springer.com/article/10.1007/s10601-012-9137-8
https://www.doi.org/10.1007/978-3-319-98334-9_22
https://www.academia.edu/55629464/Sampling_strategies_and_variable_selection_in_constraint_satisfac_tion_search
https://www.academia.edu/55629464/Sampling_strategies_and_variable_selection_in_constraint_satisfac_tion_search
https://doi.org/10.1016/0004-3702(80)90051-X
https://doi.org/10.1016/0004-3702(80)90051-X
http://link.springer.com/10.1007/978-3-540-30201-8_41
https://www.doi.org/10.1007/978-3-319-23525-7_7
https://www.doi.org/10.1007/978-3-319-23525-7_7
https://doi.org/10.1007/978-3-030-05318-5_1
http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1904.07272
http://arxiv.org/abs/1904.07272
https://doi.org/10.1007/978-0-387-32833-1_379
https://doi.org/10.1007/978-3-642-04898-2_324
https://doi.org/10.1007/978-3-642-04898-2_324
https://scikit-optimize.github.io/dev/
https://scikit-optimize.github.io/dev/
https://docs.minizinc.dev/en/2.3.0/index.html
https://www.doi.org/10.1007/978-3-540-74970-7_38
https://www.doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10844-021-00666-5


[35] F. Chalumeau, I. Coulon, Q. Cappart, and L.-M. Rousseau, “SeaPearl:
A Constraint Programming Solver guided by Reinforcement Learning,”
Apr. 2021, arXiv:2102.09193 [cs]. [Online]. Available: http://arxiv.org/
abs/2102.09193

[36] H. Wattez, F. Koriche, C. Lecoutre, A. Paparrizou, and S. Tabary,
“Learning Variable Ordering Heuristics with Multi-Armed Bandits
and Restarts,” Santiago de Compostela, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:221714020

[37] F. Koriche, C. Lecoutre, A. Paparrizou, and H. Wattez, “Best

Heuristic Identification for Constraint Satisfaction,” in Proceedings
of the Thirty-First International Joint Conference on Artificial
Intelligence. Vienna, Austria: International Joint Conferences on
Artificial Intelligence Organization, Jul. 2022, pp. 1859–1865. [Online].
Available: https://www.ijcai.org/proceedings/2022/258

[38] F. Doolaard and N. Yorke-Smith, “Online Learning of Deeper Variable
Ordering Heuristics for Constraint Optimisation,” Oct. 2022. [Online].
Available: https://doi.org/10.1007/s10472-022-09816-z

http://arxiv.org/abs/2102.09193
http://arxiv.org/abs/2102.09193
https://api.semanticscholar.org/CorpusID:221714020
https://www.ijcai.org/proceedings/2022/258
https://doi.org/10.1007/s10472-022-09816-z

	Introduction
	Background
	Constraint Programming
	Search Strategies
	Hyperparameter Optimization

	Probe and Solve Algorithm
	Algorithm

	Validating the Robustness in Shorter Timeouts
	Experiments
	Experimental Setup
	Implementation
	XCSP3 Benchmark with ACE Solver
	Minizinc Benchmark with Choco Solver
	Detailed Analysis and PSA Performance

	Related Work
	Conclusion
	References

