
Programming Fundamentals 2

Pierre Talbot

20 May 2021

University of Luxembourg

Chapter XII. Network Programming in Java

0

Introduction

Today, we learn about networking in Java by implementing a chatting

app!

Implementing Discord: step by step

1. Discord V1: 1 client and 1 server (echo server).

2. Discord V2: n clients and 1 server, but the clients cannot see the

messages of others.

3. Discord V3: n clients and 1 server, the messages are broadcasted,

and the server can be shutdown.

Please clone the following repository:

https://github.com/ptal/chatroom

1

https://github.com/ptal/chatroom

Discord V1: 1 server - 1 client

1

Networking in a nutshell

• Each machine is identified by an IP address.

• To communicate with a machine, we open a communication channel

on a particular port (e.g., 80 for http).

• Ports numbered from 0 to 1023 are reserved for common protocols

(http, dns, echo, ...).

2

Client-server model

• A server listens the request of the clients on a particular port.

• A client connects to the server with the coordinate (ip, port).

• The server can act as an intermediate among clients (e.g., chatting

app).

• It is a centralized model because the server is at the center and all

communications go through the server.

• When the server is dead, nobody can communicate anymore (in

contrast to peer-to-peer network).

3

Client-server communication scenario

4

Client-server in Java

Implement this scenario in Server.java and Client.java

5

Networking Protocol

5

Protocol

6

What is a protocol

• A protocol specifies how the server and clients communicate.

• Basically, who send what at what time.

• If the protocol is well-documented, we can implement a client

without looking at the code of the server.

Example

1. The client sends a pseudo and a password

2. The server verifies if it is correct and send ok if it is, and ko

otherwise.

3. The client go to step (1) if it receieves ko. Otherwise, it continues

by asking profile information.

4. The server send the information.

5. . . .

7

Protocol format

• Two families

1. Binary: Data is structured and interpreted following the size in bytes

of the different fields.

2. Text: Data is an array of characters, possibly describing a high-level

format (e.g., XML, JSON).

8

Binary format procotol

For instance, network protocols are specified in a binary format.

Image from http://iacs.seas.harvard.edu/courses/ac263/course/protocols.html

9

http://iacs.seas.harvard.edu/courses/ac263/course/protocols.html

Binary format procotol

• Advantage of binary format is that the size of a network packet is

minimized.

• However, packet are not easily readable, harder to implement and

not adequate for interoperability.

• Normally, only use binary format if the text format was shown

to be too slow.

• An exception: serialization...

10

A useful binary protocol: Serialization

Serialization is the process of turning a data structure, in our case a Java

object, into a sequence of bytes. The sequence of bytes can be written in

a file or transmitted over the network.

• (+) Completely automatic and transparent for us.

• (+) Very easy to use (implements Serializable in Java).

• (-) Not interoperable: only for the communication between 2 Java

programs.

11

Example from game/action/Turn.java in LOL2D

public class Turn implements Serializable {

public void send(Socket socket) throws IOException {

OutputStream outputStream = socket.getOutputStream();

ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

objectOutputStream.writeObject(this);

}

@SuppressWarnings("unchecked")

public static Turn receive(Socket socket) throws IOException {

InputStream inputStream = socket.getInputStream();

ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

Object rawTurn = null;

try { rawTurn = objectInputStream.readObject(); } catch(Exception e) {}

if(!(rawTurn instanceof Turn)) {

throw new BadProtocolException("turn of type ‘Turn‘.");

}

return (Turn) rawTurn;

}

}

12

Text-based protocol

Example from the add-ons server of the game Battle for Wesnoth (

http://hyc.io/wesnoth/umcd.pdf).

Request to delete an add-on

• Format:

[request_umc_delete]

id = ID

password = PASSWORD

[/request_umc_delete]

• Fields description:

ID The ID of the UMC we want to delete.

PASSWORD The password of the UMC.

13

http://hyc.io/wesnoth/umcd.pdf

Text-based protocol

Reply from the server

• An error packet can be sent for the common reasons (see 2.4.2) but

also because:

1. The password is wrong.

• In case of success, a packet with no field is sent.

[request_umc_delete]

[/request_umc_delete]

14

Optional exercise: JSON protocol

• Encapsulate a message in a JSON packet.

• For this purpose, specify a very simple protocol.

Exemple

{

name: "request_umc_delete",

id: 132,

password: "UTE6542162143ECUSACE"

}

Example of JSON specification: https:

//github.com/ptal/online-broker/wiki/Online-broker-API

15

https://github.com/ptal/online-broker/wiki/Online-broker-API
https://github.com/ptal/online-broker/wiki/Online-broker-API

JSON Library

Maven dependency (to add in pom.xml)

<dependency>

<groupId>org.json</groupId>

<artifactId>json</artifactId>

<version>20141113</version>

</dependency>

Example

import org.json.simple.JSONObject;

//...

JSONObject obj = new JSONObject();

obj.put("name","request_umc_delete");

obj.put("id", new Integer(132));

obj.put("password", "UTE6542162143ECUSACE");

StringWriter out = new StringWriter();

obj.writeJSONString(out);

String jsonText = out.toString();

JSONObject sameObj = new JSONObject(jsonText);

16

Discord V2: 1 server - n isolated clients

16

Multi-clients server

Challenge

• How can a server manages several clients simultaneously?

• We would like to perform several concurrent actions:

1. Accept new clients.

2. Wait messages from clients already connected.

• The problem is that these two actions are blocking, we can do one

or the other.

17

Solution 1: two steps protocol

• The easiest solution is to wait for a number of clients and then start

the discussion.

• Each client talks one after the other.

• This is what happens in LOL 2D.

• But not very useful for a chatroom...

18

Solution 2: N+1 programs

The intuition is to have:

• 1 program accepting new clients.

• N programs communicating with the N clients connected.

Generating so many programs is heavy for the systems and consume a lot

of resources. A solution is to use threads.

19

Threads

There exists two ways to create threads in Java: inherting from Thread

or implementing the interface Runnable.

class Connection extends Thread {

Socket socket;

Connection(Socket socket) {

this.socket = socket;

}

public void run() {

// code communicating with the client

...

socket.close();

}

}

...

Connection connection = new Connection(socket);

connection.start();

20

Runnable

If your class need to inherit from something else, you can use the

interface Runnable:

class Connection implements Runnable {

Socket socket;

Connection(Socket socket) {

this.socket = socket;

}

public void run() {

// code communicating with the client

...

socket.close();

}

}

21

Exercise: Discord V2

Create an instance of the Connection class each time the server receives

a new request:

while(true) {

Socket socket = server.accept();

System.out.println("New client at " + socket);

new Connection(socket).start();

}

22

Discord V3: 1 server - n clients (+ clean

shutdown of the server)

22

Clean shutdown of the server

To stop the server, you must signal to all running threads that you want to

stop.

class Connection extends Thread {
...

public void interrupt () {
super. interrupt ();

try {
socket . close ();

} catch (IOException e) {} // quietly close

}
public void run() {
try {

...

}
catch (InterruptedIOException e) {
Thread.currentThread(). interrupt ();

}
catch (IOException e) {
}
socket . close ();

}
}
...

Connection connection = new Connection(socket);

...

connection. interrupt ();

23

Clean shutdown of the server

• To stop all connections, you must first register those in an array.

• Then, the method join of a thread allows us to wait for the end of

the thread execution.

ArrayList<Connection> connections = new ArrayList<Connection>();

...

for(Connection c : connections) {

c.interrupt();

}

for(Connection c : connections) {

c.join();

}

24

Discord V3: Chat room

• Each time the server receives a message, it is broadcasted to all

connected clients.

• We keep all the connections in the Server class.

• Each time a client is accepted, it is added in the list room, and when

it quits, it is removed.

class Server {

ArrayList<Connection> room;

...

public void broadcast_msg(String msg) {

for(Connection c : connections) {

c.send(msg);

}

}

}

25

Two threads for the client

Since the client can send and receive messages, we need one thread for

each:

class Client implements Runnable {

MessageReader msgReader;

public Client(...) {

msgReader = new MessageReader(in);

msgReader.start();

}

public void run() {

while ((userInput = stdin.nextLine()) != null) {

out.println(userInput);

}

}

}

Improve this code so the program exits when the user types ”\quit”.

26

Two threads for the client

Since the client can send and receive messages, we need one thread for

each:

class Client implements Runnable {

MessageReader msgReader;

public Client(...) {

msgReader = new MessageReader(in);

msgReader.start();

}

public void run() {

while ((userInput = stdin.nextLine()) != null) {

out.println(userInput);

}

}

}

Improve this code so the program exits when the user types ”\quit”.

26

Quick Notes on Multithreading

26

Race conditions

• To communicate, threads share memory (e.g., they share an object).

• This communication model, called shared memory multithreading is

very hard to use right.

• Indeed, two threads can write in the same variable at the same time.

Example

Let x , y be shared and initialized to 0.

Thread 1 Thread 2

x = 1 y = 1

r1 = y r2 = x

What are the possible results?

Everything is possible: r1=1,r2=1 or r1=1,r2=0 or r1=0,r2=1 but

also r1=0,r2=0.

27

Race conditions

• To communicate, threads share memory (e.g., they share an object).

• This communication model, called shared memory multithreading is

very hard to use right.

• Indeed, two threads can write in the same variable at the same time.

Example

Let x , y be shared and initialized to 0.

Thread 1 Thread 2

x = 1 y = 1

r1 = y r2 = x

What are the possible results?

Everything is possible: r1=1,r2=1 or r1=1,r2=0 or r1=0,r2=1 but

also r1=0,r2=0.

27

Synchronized

A race condition occurs when two threads write on the same variable.

How to retreive some sequentiality and force the threads to write one at

a time?
public class SafeInteger {

private int x = 0;

public synchronized void increment() {

x = x + 1;

}

}

The keyword synchronized guarantees that only one thread can only

enter a method at a time.

28

Back to the server

• We must carefully add synchronized at the right places.

• What are the resources shared by the different threads?

• Mainly the list of connections and during the broadcast.

• Moreover, we do not want to keep the arrival order of the messages

of the clients.

Exercise: improve the server to erase a client from the connections list

when it disconnects or sends ”\quit”.

29

Concurrency vs Parallelism

From http://docs.oracle.com/cd/E19455-01/806-5257/

6je9h032b/index.html:

• Parallelism: A condition that arises when at least two threads are

executing simultaneously.

• Concurrency : A condition that exists when at least two threads are

making progress. A more generalized form of parallelism that can

include time-slicing as a form of virtual parallelism.

30

http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Conclusion

Multithreading is hard and generally unsafe, avoid

to use it as much as you can.

We will discuss about various parallel programming models in PF3.

See also The problem with threads, Lee Edward, 2006

31

