Programming Fundamentals 2

[]
Pierre Talbot ll Il I I II
°

30 March 2021 :
UNIVERSITE DU

University of Luxembourg LUXEMBOURG

Chapter VIII. Error Management

Error management

We are going to study two aspects of error management:

e How to report and handle errors generated by a method.

e How to avoid unwanted errors by testing.

Error handling

Case study: search a Pokemon card

We are considering the laboratory 2 as an example. In this laboratory, we
have a deck of cards and we want to search for a card meeting a criterion
such as finding a card with a specific name.
An example of signature for this method is:

public Card searchByName(String name) { ... }

What to do if the card is not in the collection?

We look at various solutions, proposed in your labs, to this problem:

(I) Return a special value (e.g., null or -1),

(I

) Return the string representation of the card directly,
(M) Return an error object of the same type,

)

)

(v

(V) Throw an exception.

Return a list,

Case Study la: Return null

public Card getCardById(String id) {
for (Card card : deck) {
if (id.equals(card.getId())) {
return card;
¥
¥
return null;

}

If the card is not in the deck, null is returned.

Case Study Ib: Return -1

public int findCardIndexByNumber(int cardNumber)
{
int index = -1;
for (int i=0; i < deck.size() ; ++i) {
if (deck.get(i).getCardNumber() == cardNumber){
index = i;
break;
}
}

return index;

Instead of directly returning a card, we return its index in the deck, and
-1 if it is not inside.

Case Study I: Discussion

This kind of error handling is very common in language such as C. One

problem with such scheme is on the calling site:
public void modifyCard(String id) {
Card card = getCardById(id);

if (card != null)
card.modify();

Each time the method is called, we must check for card != null

or cardIdx !'= -1.

e We can easily forget to check that, and generate a
NullPointerException or OutOfBoundException.

Normally, this solution is not the way to go.

See also Code Clean, Chapter 7, “Don’t return null”.

Case Study I: Discussion

Further, it leads to code harder to read when all the error handling is
performed that way:

int id = askUserForID();

if(id == -1) {
wrongUserInput () ;

}

else {

Card card = getCardById(id);

if (card == null) {
wrongID() ;

}

else {
/o

}

}

The logic of the code is lost in error handling, the code is actually quite
simple:

int id = askUserForID();
Card card = getCardById(id);

/e

Case Study Il: Return the String representation

public String searchCardByNumber (){
System.out.println("What is the number you want to search?");
String searchedNumber= input.getInput();
for(int i=0;i < cards.size(); i++){
if (cards.get (i) .number.equals(searchedNumber))
return "Searched card: \n" +cards.get(i).toString();
¥
return "Card number doesn’t exist.";

}

Case Study Il: Discussion

This solution has massive downsides:

e We cannot reuse searchCardByNumber for something else (e.g.,
modifying the card),

e We cannot use searchCardByNumber if we already obtained the ID
from another source,

e The user interface is tightly coupled with the business logic: hard to
maintain.

e This function has too many responsibilities: (i) ask a number to the
user, (ii) search the number, (iii) prepare the resulting output.

e This is not a good solution neither.

e Bad variant: searchCardByNumber directly prints the message and
returns nothing.

Case Study Ill: Return an error object of the same type

public Card searchByName(String name) {
Card matching = new Card (" Not Found", " ", 0);
for(int i=0; i < cards.size(); i++)
{
if (cards.get(i).getName().equals(name))
{
matching = cards.get(i);
return matching;
}
}
return matching;

}

10

Case Study Ill: Discussion

This solution is not too bad, but has a strong disadvantage:
This method expects to be called in a specific context.

That is, it expects the card to be printed immediately afterwards.
e What if we use this method in another context, e.g., to find a card
to modify?
e Should we let the user modify a card that doesn't exist?

e How to detect the card doesn't exist?

Note that in some other places, an improvement of this solution can be
good, c.f., Code Clean, Chapter 7, “Define the Normal Flow”.
See also the SPECIAL CASE DESIGN PATTERN.

11

Case Study IV: Return a list

public ArrayList<Card> getCardsByName(String name) {
ArrayList<Card> searchResults = new ArrayList<Card>();
for (Card card : deck) {
if (name.equals(card.getName())) {
searchResults.add(card) ;
¥
}

return searchResults;

12

Case Study IV: Discussion

This solution is a good one:

e |t returns an empty list if no card matches the name,
e It is callable in any kind of context,
e |t generalizes the previous method to cards with multiple names

(why can it happen though?).

See also “ltem 54: Return empty collections or arrays, not nulls”,
Effective Java.

13

Case Study IVb: Return a Optional

public Optional<Card> getCardByName(String name) {
for (Card card : deck) {
if (name.equals(card.getName())) {
return Optional.of (card);
}
¥
return Optional.empty();

14

Case Study IVb: Discussion

On the calling site, we cannot forget to check that the card exists (unlike
with null and -1), because this information is built in the return type.
Optional<Card> card_opt = getCardByName (name) ;
if (card_opt.isPresent()) {

Card card = card_opt.get();
}

else {

/)
}

However, the code can become less clear (similarly than with return
code). The methods Optional.ifPresent, Optional.map,... can help

for this purpose.

See also “ltem 55: Return optionals judiciously”, Effective Java.

15

Case Study V: Throw an exception

public Card searchCardByName(String name){
for (Card card : cards) {
if (card.name() .equal (name)) {
return card;
}
¥

throw new RuntimeException("Card not found");

16

Case Study V: Discussion

This is the most idiomatic way of reporting an error in Java. Exceptions
are, however, not perfect. We give a more in-depth explanation of
exceptions in the following slides.

17

Exception

Syntax of exception

ThrowStatement:
throw Expression ; throw new CardNotFound (cardName) ;
TryStatement:
try Block Catches try { ... } catch(CardNotFound ¢) { ... }
try Block [Catches] Finally try { ... } catch(CardNotFound ¢) { ... } finally { ... }

18

Exception by example

public class CardNotFoundException extends RuntimeException {
private String name;
public CardNotFound(String name) { this.name = name; }
public String toString() {
return "The card " + name + " could not be found in the deck.";

}

public Card searchCardByName(String name) {
for (Card card : cards) { ... }
throw new CardNotFoundException(name) ;

}

public void printCard(String name) {

try {
Card card = searchCardByName (name) ;
System.out.println(card);

}

catch(CardNotFoundException e) {
System.out.println(e);

¥

19

Advantages and disadvantages of exceptions

Exceptions provide a clean way to handle errors separately from the

normal flow of the code.

They are non-intrusive, meaning that the signature of the method
does not need to be modified.

Exceptions can be arbitrarily rich in information.

It is sometimes hard to figure out the exceptions a method can
throw, documentation is therefore important for this purpose.

See "ltem 74: Document all exceptions thrown by each method”, Effective Java

Can be easily ignored, and ends up in the main function, which then
exits and prints the exception calling stack.

onal feature I: Checked exception

Place the exceptions a method can throw in the signature of its method:

public Card searchCardByName(String name) throws CardNotFoundException {
for (Card card : cards) { ... }
throw new CardNotFoundException(name) ;

}

This forces the calling method to treat the exception, however:

e If the exception is treated higher in the calling stack, it forces all the
intermediate calling methods to add this exception to their
signatures.

e |t is tedious to use in practice, and not too useful.

e As suggested by Code Clean (Chapter 7), we will avoid using
checked exceptions.

e However, it is not a universal point of view, see “item 70: Use checked
exceptions for recoverable conditions and runtime exceptions for programming errors”,

Effective Java.

21

Additional feature Il: try-with-resources

When acquiring a resource, such as Scanner, a file or a network socket,
we must close it after using it:

public Optional<String> readFirstLineOf (String path) {
BufferedReader br = new BufferedReader (new FileReader (path));
try {

return Optional.of (br.readLine());

} catch(IOException) {

return Optional.empty();

finally {

br.close();

[

22

Additional feature Il: try-with-resources

The try-with-resources statement is a convenient syntactic sugar to
automatically closing a resource:

public Optional<String> readFirstLineOf (String path) {
try (BufferedReader br =
new BufferedReader (new FileReader(path))) {
return Optional.of (br.readLine());
} catch(IOException) {
return Optional.empty();
¥
}

No need for the finally block, br is closed automatically.

23

Additional feature Il: try-with-resources

The try-with-resources statement works with any class implementing the
interface Closeable. For instance with Scanner:

public Optional<Integer> readInteger() {
try (Scanner scanner = new Scanner(System.in)) {
if (scanner.hasNextInt()) {
return Optional.of (scanner.nextInt());
}
¥
return Optional.empty();

24

Testing

Black-box vs white-box testing

Two main categories of testing:
e Black-box testing: we test the functionalities of a system based on
its input-output. This is how we tested Connect Four.
e White-box testing: The internal methods of the system are tested.
This is (almost) how we tested DynamicArray.
Testing an overall behavior is generally done by black-box testing. This is
also much easier to test GUI that way.

Here, we will focus on unit testing which is a form of white-box testing.

25

Why testing our project?

To find some bugs before they appear in production.

To be the first user of our method: a method hard to test will be

hard to use.

To trust our code: when we modify a part of our code, we can run
the tests to verify nothing is broken.

To gain time: debugging is very long and painful.

26

How to unit test?

As we have shown for DynamicArray, we do not need anything special
to start unit testing. However, it might be convenient to use a dedicated
testing framework, here we will use JUNIT 5, aka. JUNIT JUPITER.
(https://junit.org/junit5/docs/current/user-guide/)

You can retrieve a sample test project testing the class DynamicArray
by doing:

git clone https://github.com/ptal/lab2-pokedeck/
cd lab2-pokedeck

git checkout testing

mvn test

https://junit.org/junit5/docs/current/user-guide/

Add to pom.xml

<build>
<plugins>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.2</version>
</plugin>
<plugin>
<artifactId>maven-failsafe-plugin</artifactId>
<version>2.22.2</version>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>org. junit.jupiter</groupIld>
<artifactId>junit-jupiter-api</artifactId>
<version>5.7.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org. junit.jupiter</groupIld>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.7.1</version>
<scope>test</scope>
</dependency>
</dependencies>

(See https://junit.org/junit5/docs/current/user-guide/

#running-tests-build-maven)
28

https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven
https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven

Create a JUnit test

o Create the folder src/test/java/.

e Inside, it can follow the same package hierarchy than in
src/main/java, e.g., src/test/java/lab2/pcg/DeckTest. java.

e You create one test class per class you want to test, e.g., to test
DynamicArray. java, you create the class
DynamicArrayTest. java.

29

Testing a method

class DynamicArrayTest {

QTest

@DisplayName("Add elements in DynamicArray")

void testAdd() {
DynamicArray array = new DynamicArray();
assertEquals(array.size(), 0);
assertTrue(array.isEmpty());
array.clear();
assertEquals(array.size(), 0);
assertTrue(array.isEmpty());
array.add(4);
array.add(5);
array.add(6);
assertEquals(array.toString(),"[4, 5, 6]1");

e Q@Test: only the methods with this annotation are called for testing.
e assertEquals(exprl, expr2) checks that both expressions are
equal.

e assertTrue(expr) checks the expression is true.

30

BeforeEach annotation

DynamicArrayTest is a normal class, so we can declare attributes:

class DynamicArrayTests {
private DynamicArray array;

@BeforeEach
void init() {
array = new DynamicArray();

}

Q@Test
@DisplayName("Add elements in DynamicArray")
void testAdd() {

assertEquals(array.size(), 0);

Instead of declaring and initializing array in all testing methods, we use
@BeforeEach to call init () before each method.

31

Testing for exceptions

QTest
@DisplayName("Add and remove elements in DynamicArray")
void testRemove() {
populate(); // add the elements 4, 5, 6 in the array.
array.remove(1);
testArrayContent (2, "4, 6");
array.remove(1);
testArrayContent (1, "4");
assertThrows (ArrayIndexOutOfBoundsException.class, () -> array.remove(1));
array.remove(0);
testArrayContent (0, "");

assertThrows(E.class, () -> x.f()) tests that the method x.£()
is throwing an exception of type E.

32

What is a good test? FIRST!

[F]ast: Tests must be very fast so we run them frequently.

[l]solated: Tests must not connect to a database, the network, ...

[R]epeatable: Running the same test 10 times must give the same
result. Randomness is proscribed.

[S]elf-validating: The process of verifying if a test succeeds must be
automatic, e.g., we shall not need to read the output of a test.

e [T]imely: Don't write Java code without test, 1 method = 1 test.

Source: Pragmatic unit testing in Java 8 with JUnit

33]

Write a good test: Right-BICEP

e Right Are the results right?

B Are all the boundary conditions correct?

| Can you check inverse relationships?

C Can you cross-check results using other means?

e £ Can you force error conditions to happen?

P Are performance characteristics within bounds?

Source: Pragmatic unit testing in Java 8 with JUnit

34

Test Driven Development (TDD)

Methodology where the tests are central to the project:

e Instead of writing the code, then the tests, you do the opposite!

e Because we write the tests first, it forces us to think about the
usability of our methods.

More about testing in Software Engineering 1 and Software Engineering 2.

35

