
Programming Fundamentals 2

Pierre Talbot

18 May 2021

University of Luxembourg

Chapter IX. Parametric Polymorphism

0

Introduction

• Context: In lab 2, you implemented DynamicArray.

• Problem: It can only store integer values.

• Today: How can we design an array for any kind of values?

public class DynamicArray {

private ?? data;

public DynamicArray() { ?? }

public int size() { ?? }

public boolean add(?? e) { ?? }

public ?? get(int index) { ?? }

}

1

Solution 1: with Object

We can use an array of Object, since, remember, every class inherits

from Object.

public class ArrayList {

static final int DEFAULT_CAPACITY = 10;

private Object[] data;

private int size = 0;

public ArrayList() { data = new Object[DEFAULT_CAPACITY]; }

public int size() { return size; }

public void add(Object e) {

ensureCapacity();

data[size] = e;

++size;

}

public Object get(int i) {

if(i < 0 || i >= size) { throw OutOfBoundException(); }

return data[i];

}

private void ensureCapacity() { /∗ ... ∗/ }

}

2

Problems. . .

• Make a list of String.

• Add and retrieve a string with this list.

• Is it easy and readable?

The downcast (String)e; is not very readable and secure, why?

ArrayList personNames = new ArrayList();

personNames.add(new String("Gertrude"));

personNames.add(new String("Johnny")));

Object e = personNames.get(1);

String name = (String)e;

Exception ClassCastException for:

Integer i = (Integer)e;

3

Problems. . .

• Make a list of String.

• Add and retrieve a string with this list.

• Is it easy and readable?

The downcast (String)e; is not very readable and secure, why?

ArrayList personNames = new ArrayList();

personNames.add(new String("Gertrude"));

personNames.add(new String("Johnny")));

Object e = personNames.get(1);

String name = (String)e;

Exception ClassCastException for:

Integer i = (Integer)e;

3

Problems. . .

• Make a list of String.

• Add and retrieve a string with this list.

• Is it easy and readable?

The downcast (String)e; is not very readable and secure, why?

ArrayList personNames = new ArrayList();

personNames.add(new String("Gertrude"));

personNames.add(new String("Johnny")));

Object e = personNames.get(1);

String name = (String)e;

Exception ClassCastException for:

Integer i = (Integer)e;

3

And so?

• Until Java 5.0, it was the only solution.

• In Java 5.0, the concept of generics enables parametric

polymorphism.

What are the problems of an array of Object?

• Casts are required.

• No compile-time check if the cast is invalid.

• For instance: House h = (House)e, in the previous example,

compiles, but an exception is thrown at runtime.

4

Parametric polymorphism: don’t repeat yourself!

• To avoid casts, we could create a ArrayList class for each types,

e.g., ArrayListInteger or ArrayListPokemonCard.

• But the implementation of the methods would be redundant.

• Actually, we don’t even need to know the underlying type to

implement these methods!

• Solution: Use generics!

Advantages

• The code is safer and more readable.

• Decrease runtime casts.

• Allows us to write generic classes and algorithms more easily.

5

Solution 2: Generics (first try)

public class ArrayList<T> {

static final int DEFAULT_CAPACITY = 10;

private T[] data;

private int size = 0;

public ArrayList() { data = new T[DEFAULT_CAPACITY]; }

public int size() { return size; }

public void add(T e) { /∗ as in solution 1 ∗/ }

public T get(int i) { /∗ as in solution 1 ∗/ }

private void ensureCapacity() { /∗ ∗/ }

}

• ArrayList<T> in now parametric in a type T.

• ArrayList<T> remains a class, that can be used as a “normal

class”.

6

A subtlety (second try)

public class ArrayList<T> {

static final int DEFAULT_CAPACITY = 10;

private T[] data;

private int size = 0;

public ArrayList() { data = (T[]) new Object[DEFAULT_CAPACITY];}

public int size() { return size; }

public void add(T e) { /∗ idem ∗/ }

public T get(int i) { /∗ idem ∗/ }

private void ensureCapacity() { /∗ ∗/ }

}

Java does not support creating array of generic elements. Therefore, we

create an array of objects that we cast immediately to the generic type.

7

Generics are transformed at compile-type

Backward compatible extension

• When generics were introduced, a lot of code already exists, so this

existing code should not break with new Java version.

• Solution: Generics are erased at compile-time, and transformed into

Object.

• Hence, generics are actually transformed to the code we had in

solution 1, but we have additional safety guarantees.

8

Compiling generics

Two techniques

1. Code expansion (such as in C++), a new class is automatically

created for each class instantiation:

• ArrayList<Double> −→ ArrayListDouble

• ArrayList<String> −→ ArrayListString

• The parametric type T is replaced by the real one.

2. Type erasure (as in Java)

• The parametric type T is replaced by a super type (Object).

• Type conversions are added by the compiler automatically.

• Generated code is the same as for solution 2.

9

Two usages of generic classes, a single code

• In Java, the generic type is replaced by Object.

• Which means that we can actually use ArrayList as a generic class

or not.

• For instance, we can write ArrayList without generic parameter,

and we will have a class with array of objects.

10

Two usages of generic classes, a single code

Non-generic usage

ArrayList x = new ArrayList();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = (String)x.get(0);

Line 2: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new String("M. George"));

Line 3: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new Integer(0));

• Compiler will output warnings.

• Heterogeneous array (several types) are generally a bad idea, it is

better to use inheritance or enumeration instead.

• Always the risk to generate an exception if we mess up the cast.

11

Two usages of generic classes, a single code

Non-generic usage

ArrayList x = new ArrayList();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = (String)x.get(0);

Line 2: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new String("M. George"));

Line 3: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new Integer(0));

• Compiler will output warnings.

• Heterogeneous array (several types) are generally a bad idea, it is

better to use inheritance or enumeration instead.

• Always the risk to generate an exception if we mess up the cast.

11

Two usages of generic classes, a single code

Non-generic usage

ArrayList x = new ArrayList();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = (String)x.get(0);

Line 2: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new String("M. George"));

Line 3: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new Integer(0));

• Compiler will output warnings.

• Heterogeneous array (several types) are generally a bad idea, it is

better to use inheritance or enumeration instead.

• Always the risk to generate an exception if we mess up the cast.

11

Two usages of generic classes, a single code

Generic usage

ArrayList<String> x = new ArrayList<String>();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = x.get(0);

Line 3: error: incompatible types: Integer cannot be converted

to String

x.add(new Integer(0));

• The compiler generates an error.

• It guarantees we can only put in the list what is specified in the

angle brackets (ArrayList<MyType>).

• No need to cast when we use get, we give the compiler enough

information so it can safely add the cast itself.

12

Two usages of generic classes, a single code

Generic usage

ArrayList<String> x = new ArrayList<String>();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = x.get(0);

Line 3: error: incompatible types: Integer cannot be converted

to String

x.add(new Integer(0));

• The compiler generates an error.

• It guarantees we can only put in the list what is specified in the

angle brackets (ArrayList<MyType>).

• No need to cast when we use get, we give the compiler enough

information so it can safely add the cast itself.

12

Two usages of generic classes, a single code

Generic usage

ArrayList<String> x = new ArrayList<String>();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = x.get(0);

Line 3: error: incompatible types: Integer cannot be converted

to String

x.add(new Integer(0));

• The compiler generates an error.

• It guarantees we can only put in the list what is specified in the

angle brackets (ArrayList<MyType>).

• No need to cast when we use get, we give the compiler enough

information so it can safely add the cast itself.

12

Advanced concepts of generics

12

Multiple generics parameters

• Some classes need several generics type.

• For instance in the associative array data structure.

Associative array

• Associate a key to a value. For instance, the name of someone to its

address.

• HashMap<String, Address> directory = new HashMap<String, Address>();

public class SimpleMap<K,V> { // Key and Value

private ArrayList<Pair<K,V>> data;

private static class Pair<K,V> {

public K key;

public V value;

}

// ...

}

13

Type inference

• Type inference allows us to ask the compiler to guess (or infer) the

type of an expression.

• It is not very powerful in Java but still useful for clarity.

HashMap<String, Address> directory = new HashMap<>();

14

Generic methods I

Challenge

Create a static method head which takes an ArrayList and returns

the first element.

Non-generic

public class ArrayListTools {

public static Object head(ArrayList data) {

return data.get(0);

}}

15

Generic methods I

Challenge

Create a static method head which takes an ArrayList and returns

the first element.

Non-generic

public class ArrayListTools {

public static Object head(ArrayList data) {

return data.get(0);

}}

15

Generic methods II

Is it working if we write the following?

ArrayList<String> names = new ArrayList<String>();

ArrayListTools.head(names);

• No! ArrayList<String> does not inherit from ArrayList<Object>.

• Invariant types: Inheritance is not propagated to type parameters, i.e.,

X<T> and X<U> are never subtypes of each other.

• Covariant types: This is not the case with array, i.e., String[] is a

subtype of Object[].

We should use a generic method:

Generic method

public class ArrayListTools {

public static <T> T head(ArrayList<T> data) {

return data.get(0);

}}

16

Generic methods II

Is it working if we write the following?

ArrayList<String> names = new ArrayList<String>();

ArrayListTools.head(names);

• No! ArrayList<String> does not inherit from ArrayList<Object>.

• Invariant types: Inheritance is not propagated to type parameters, i.e.,

X<T> and X<U> are never subtypes of each other.

• Covariant types: This is not the case with array, i.e., String[] is a

subtype of Object[].

We should use a generic method:

Generic method

public class ArrayListTools {

public static <T> T head(ArrayList<T> data) {

return data.get(0);

}}

16

Generic methods II

Is it working if we write the following?

ArrayList<String> names = new ArrayList<String>();

ArrayListTools.head(names);

• No! ArrayList<String> does not inherit from ArrayList<Object>.

• Invariant types: Inheritance is not propagated to type parameters, i.e.,

X<T> and X<U> are never subtypes of each other.

• Covariant types: This is not the case with array, i.e., String[] is a

subtype of Object[].

We should use a generic method:

Generic method

public class ArrayListTools {

public static <T> T head(ArrayList<T> data) {

return data.get(0);

}}

16

Bounded type parameters

When a class is instantiated with a generic type T, it has no information

on T, thus cannot call any method on this object.

We can bound the type.

class SortedArrayList<T extends Comparable> {

private T[] data;

// ...

data[i].compareTo(data[i+1]); // ok, T implements Comparable.

}

• Subtlety: We use extends even if Comparable is an interface.

• We can also give several type bounds: <T extends Comparable &

Cloneable>.

17

More on generics

• Lower and upper type bounds.

• Wildcard (<?>).

• . . .

More on the topic:

• Effective Java, Chapter 5.

• http://en.wikipedia.org/wiki/Generics_in_Java

• http://en.wikipedia.org/wiki/Wildcard_%28Java%29

• On a more general topic: http://en.wikipedia.org/wiki/

Covariance_and_contravariance_%28computer_science%29

• Another book: Java Generics and Collections, Maurice Naftalin and

Philip Wadler, O’reilly, 2006

18

http://en.wikipedia.org/wiki/Generics_in_Java
http://en.wikipedia.org/wiki/Wildcard_%28Java%29
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29

